Question-6
Let \(A,B,C\) be three matrices of order \(3\). Comment on the truth value of the following statements:
\(\text{det}(ABC)=\text{det}(A)\text{det}(B)\text{det}(C)\)
\(\text{det}\left(A^{3}\right)=\left(\text{det}(A)\right)^{3}\)
\(\text{det}(A+B+C)=\text{det}(A)+\text{det}(B)+\text{det}(C)\)
\(\text{det}\left(AB^{T}\right)=\text{det}(A)\text{det}(B)\)
(1) We have:
\[ \begin{aligned} \text{det}(ABC) & =\text{det}((AB)C)\\ & =\text{det}(AB)\text{det}(C)\\ & =\text{det}(A)\text{det}(B)\text{det}(C) \end{aligned} \]
(2) Using the previous result and setting \(A=B=C\) shows that \(\text{det}(A^{3})=\text{det}(A)^{3}\).
(3) This is not true. Here is a counter-example:
\[ \begin{aligned} A=B=C= & I\\ \implies A+B+C & =3I\\ \implies\text{det}(A+B+C) & =27\\ \implies\text{det}(A)+\text{det}(B)+\text{det}(C) & =3 \end{aligned} \]
(4) This result is true.
\[ \begin{aligned} \text{det}(AB^{T}) & =\text{det}(A)\text{det}(B^{T})=\text{det}(A)\text{det}(B) \end{aligned} \]