Question-8
Let \(Ax=b\) be a system of linear equations.
\[ A=\begin{bmatrix}1 & 0 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix},\,\,\,x=\begin{bmatrix}x_{1}\\ x_{2}\\ x_{3}\\ x_{4} \end{bmatrix},\,\,\,\,b=\begin{bmatrix}b_{1}\\ b_{2}\\ b_{3}\\ b_{4} \end{bmatrix} \]
Find the dependent and independent variables.
When is the system consistent?
Find out all solutions to this system whenever it is consistent.
First, note that \(A\) is in rref. We first identify the pivots and the pivot columns:
\[ \begin{bmatrix}\boldsymbol{1} & 0 & 0 & 0\\ 0 & 0 & \boldsymbol{1} & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix} \]
The first and third columns are pivot columns. Hence, \(x_{1},x_{3}\) are dependent and \(x_{2},x_{4}\) are independent variables. For the system to be consistent \(b_{3}=b_{4}=0\). Let us now work with this special case:
\[ A=\begin{bmatrix}1 & 0 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix},\,\,\,x=\begin{bmatrix}x_{1}\\ x_{2}\\ x_{3}\\ x_{4} \end{bmatrix},\,\,\,\,b=\begin{bmatrix}b_{1}\\ b_{2}\\ 0\\ 0 \end{bmatrix} \]
We can give arbitrary values to \(x_{2}\) and \(x_{4}\) and then solve for \(x_{1}\) and \(x_{3}\):
\[ \begin{aligned} x_{2} & =t_{2}\\ x_{4} & =t_{4}\\ x_{3} & =b_{2}-t_{4}\\ x_{1} & =b_{1} \end{aligned} \]
The set of all solutions to the system is given by:
\[ S=\left\{ \left(b_{1},t_{2},b_{2}-t_{4},t_{4}\right):t_{2},t_{4}\in\mathbb{R}\right\} \]